Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Viruses ; 15(4)2023 04 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2298322

RESUMEN

A wide range of human respiratory viruses are known that may cause acute respiratory infections (ARIs), such as influenza A and B viruses (HIFV), respiratory syncytial virus (HRSV), coronavirus (HCoV), parainfluenza virus (HPIV), metapneumovirus (HMPV), rhinovirus (HRV), adenovirus (HAdV), bocavirus (HBoV), and others. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COronaVIrus Disease (COVID) that lead to pandemic in 2019 and significantly impacted on the circulation of ARIs. The aim of this study was to analyze the changes in the epidemic patterns of common respiratory viruses among children and adolescents hospitalized with ARIs in hospitals in Novosibirsk, Russia, from November 2019 to April 2022. During 2019 and 2022, nasal and throat swabs were taken from a total of 3190 hospitalized patients 0-17 years old for testing for HIFV, HRSV, HCoV, HPIV, HMPV, HRV, HAdV, HBoV, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by real-time PCR. The SARS-CoV-2 virus dramatically influenced the etiology of acute respiratory infections among children and adolescents between 2019 and 2022. We observed dramatic changes in the prevalence of major respiratory viruses over three epidemic research seasons: HIFV, HRSV, and HPIV mainly circulated in 2019-2020; HMPV, HRV, and HCoV dominated in 2020-2021; and HRSV, SARS-CoV-2, HIFV, and HRV were the most numerous agents in 2021-2022. Interesting to note was the absence of HIFV and a significant reduction in HRSV during the 2020-2021 period, while HMPV was absent and there was a significant reduction of HCoV during the following epidemic period in 2021-2022. Viral co-infection was significantly more frequently detected in the 2020-2021 period compared with the other two epidemic seasons. Certain respiratory viruses, HCoV, HPIV, HBoV, HRV, and HAdV, were registered most often in co-infections. This cohort study has revealed that during the pre-pandemic and pandemic periods, there were dramatic fluctuations in common respiratory viruses registered among hospitalized patients 0-17 years old. The most dominant virus in each research period differed: HIFV in 2019-2020, HMPV in 2020-2021, and HRSV in 2021-2022. Virus-virus interaction was found to be possible between SARS-CoV-2 and HRV, HRSV, HAdV, HMPV, and HPIV. An increase in the incidence of COVID-19 was noted only during the third epidemic season (January to March 2022).


Asunto(s)
COVID-19 , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Virosis , Virus , Adolescente , Humanos , Niño , Lactante , Recién Nacido , Preescolar , SARS-CoV-2 , Estudios de Cohortes , COVID-19/epidemiología , Infecciones del Sistema Respiratorio/epidemiología
2.
Sci Rep ; 13(1): 2306, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2234489

RESUMEN

Coronaviruses (CoVs) pose a huge threat to public health as emerging viruses. Bat-borne CoVs are especially unpredictable in their evolution due to some unique features of bat physiology boosting the rate of mutations in CoVs, which is already high by itself compared to other viruses. Among bats, a meta-analysis of overall CoVs epizootiology identified a nucleic acid observed prevalence of 9.8% (95% CI 8.7-10.9%). The main objectives of our study were to conduct a qPCR screening of CoVs' prevalence in the insectivorous bat population of Fore-Caucasus and perform their characterization based on the metagenomic NGS of samples with detected CoV RNA. According to the qPCR screening, CoV RNA was detected in 5 samples, resulting in a 3.33% (95% CI 1.1-7.6%) prevalence of CoVs in bats from these studied locations. BetaCoVs reads were identified in raw metagenomic NGS data, however, detailed characterization was not possible due to relatively low RNA concentration in samples. Our results correspond to other studies, although a lower prevalence in qPCR studies was observed compared to other regions and countries. Further studies should require deeper metagenomic NGS investigation, as a supplementary method, which will allow detailed CoV characterization.


Asunto(s)
Quirópteros , Infecciones por Coronavirus , Coronavirus , Animales , Coronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/genética , Genoma Viral , Filogenia , ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA